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A novel betacoronavirus, severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), which caused a large respiratory
outbreak in Wuhan, China in December 2019, is currently spread-
ing across many countries globally. Here, we show that a TMPRSS2-
expressing VeroE6 cell line is highly susceptible to SARS-CoV-2 in-
fection, making it useful for isolating and propagating SARS-CoV-2.
Our results reveal that, in common with SARS- and Middle East re-
spiratory syndrome-CoV, SARS-CoV-2 infection is enhanced by
TMPRSS2.
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In December 2019 a respiratory outbreak from a novel beta-
coronavirus, severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2), occurred in Wuhan City, China (1, 2). As of 9
February 2020, 37,558 confirmed cases and 813 deaths had been
recorded. Although the great majority of cases were reported in
China, 24 countries had already been affected with 307 con-
firmed cases. On 15 January 2020, the first case was detected in
Japan. As of 10 February 2020, Japan had 16 domestically con-
firmed cases and 9 returnees from Wuhan using government-
chartered flights. In addition, 70 cases were confirmed on a SARS-
CoV-2–quarantined cruise ship.
SARS-CoV-2 is isolatable using VeroE6, Huh7, or human

airway epithelial cells (2–4), but here we show that an engineered
cell line, VeroE6/TMPRSS2, is highly susceptible to SARS-CoV-2
infection, suggesting the important role for TMPRSS2 in SARS-
CoV-2 infection and indicating its potential utility for isolating and
propagating this virus.
Previous studies (5, 6) have shown that the phylogenetically

related SARS-CoV is proteolytically activated by TMPRSS2
in vitro and in vivo. Therefore, we attempted to isolate SARS-
CoV-2 using VeroE6/TMPRSS2 cells, which express TMPRSS2
constitutively. The messenger RNA expression level of TMPRSS2
in VeroE6/TMPRSS2 cells is ∼10-fold higher than in normal
human lung tissue and other human cell lines (Fig. 1A). SARS-
CoV-2 uses the same receptor, ACE2, as SARS-CoV (2), and
ACE2 expression is very high in VeroE6 cells (7). Seven clinical
specimens (throat swabs or sputum) obtained from seven SARS-
CoV-2 infection cases were inoculated into VeroE6/TMPRSS2
cells, which were monitored daily for cytopathic effect (CPE).
These clinical specimens were deidentified prior to use, and this
study was approved by the ethics committee of the National In-
stitute of Infectious Diseases, Japan (approval no. 1091). In-
formed consent was obtained from all participants, from which the
subjects were obtained, or their legally acceptable representatives
for sample donation. In five cases among the seven, clear CPE
with detachment/floating (black arrows, Fig. 1B) and syncytium
formation (white arrows, Fig. 1B) developed at 2 or 3 d post-
infection (p.i.) (Table 1). The virus titers in culture supernatants of
the five cases at 3 d p.i. were 4.6 × 106 to 6.8 × 107 median tissue

culture infectious dose (TCID50) per mL (Table 1). Typical
coronavirus particles were detected by electron microscopy (Fig.
1C). Next-generation sequencing (NGS) of case Wk-521 de-
tected the nearly full-length genome sequence from SARS-
CoV-2 with >99.9% homology (1, 2) (GISAID database ID
EPI_ISL_408667). Unexpectedly, the NGS data showed con-
taminated mycoplasma sequences (Mycoplasma hyorhinis and
Mycoplasma arginini) from VeroE6/TMPRSS2 cells. CPE in
VeroE6 cells persistently infected with SARS-CoV was en-
hanced by infection with Mycoplasma fermentans (8), but
whether a similar situation exists for SARS-CoV-2–related CPE
in this cell line is unclear.
The viral RNA copies in the clinical specimens used for virus

isolation were estimated by real-time RT-PCR (9, 10). As
expected, viral RNA copies in the clinical specimens in which
CPE developed within 2 d p.i. were greater than those in the
other specimens (Table 1).
VeroE6/TMPRSS2 cells are superior to other cell lines

tested in this study for SARS-CoV-2 isolation. Consistent with
previous reports (2, 4), the amount of SARS-CoV-2 RNAs in
the culture supernatants of Vero, Calu-3, and A549 cells 48 h
p.i. was low and was measurably higher when VeroE6 cells were
used. However, the viral RNA copies in the VeroE6/TMPRSS2
cell culture supernatants were >100 times greater than those
from VeroE6 cells (Fig. 1 D and E). Data for SARS-CoV show
that TMPRSS2 enhances its entry efficiency (5, 11). VeroE6
and VeroE6/TMPRSS2 cells were infected with 10-fold serially
diluted SARS-CoV-2 samples, and the infected cells were vi-
sualized by indirect immunofluorescent assays (Fig. 1E). The
results showed that VeroE6/TMPRSS2 displayed ∼10-fold
greater number of SARS-CoV-2–infected cells than the paren-
tal VeroE6 cells. These data suggest that, in common with
SARS-CoV, TMPRSS2 may also play an important role in
SARS-CoV-2 cell entry.
SARS-CoV and Middle East respiratory syndrome (MERS)-

CoV can enter cells via endocytosis and use cathepsin in endo-
somes for activation (12–14). However, TMPRSS2 expression
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greatly promotes replication and syncytium formation in these
viruses in vitro and in vivo (5, 6, 11, 12, 15). Our findings suggest
that TMPRSS2 is also likely to be a key protease for SARS-CoV-2
replication. Thus, developing TMPRSS2-related therapeutic agents
may be a promising countermeasure against the current and new
outbreaks of CoVs.
TMPRSS2-expressing cell lines are highly susceptible to SARS-

CoV, MERS-CoV, and SARS-CoV-2, making the VeroE6/
TMPRSS2 cell line a suitable contributor to the global sur-
veillance of high-risk CoVs. VeroE6/TMPRSS2 cells are easily
maintained, suitable for large-scale propagation, and now avail-
able from Japanese Collection of Research Bioresources (JCRB)
Cell Bank in Japan (https://cellbank.nibiohn.go.jp/english/) (JCRB
no. JCRB1819). Treatment for mycoplasma is now ongoing in the
JCRB Cell Bank.

Data Availability
Data have been deposited in the Global Initiative on Sharing All
Influenza Data (GISAID) database with accession ID EPI_
ISL_408667. The cell line information is available from JCRB
Cell Bank in Japan (https://cellbank.nibiohn.go.jp/english/) (JCRB
no. JCRB1819).
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Fig. 1. (A) Expression of TMPRSS2 in total cellular RNA (0.2 μg) of indicated cells was compared with that in human lung RNA (catalog no. 636524;
Clontech) by quantitative real-time PCR. ND, not detectable. (B) SARS-CoV-2–infected VeroE6/TMPRSS2 cells. Cell rounding (black arrows) and syncytium
formation (white arrows) (C ). Electron micrograph showing isolated virus particles with negative staining. (Scale bar, 200 nm.) (D) Viral RNA multi-
plication in various cells at 48 h postinoculation with the viral specimen, as determined by real-time RT-PCR using E and N primer/probe sets (9). Cq,
quantitation cycle. (E ) Real-time RT-PCR amplification plot using the E primer/probe set, corresponding to the data in C. RFU, relative fluorescence units.
(F ) Comparison of cell susceptibility to the isolated virus, detected with a patient’s serum and Alexa 488-conjugated goat anti-human IgG. Nuclei were
stained with DAPI.
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Table 1. SARS-CoV-2 cases and virus isolation

Cq value of
specimens

Case N set* N2 set* Virus isolation Days (CPE appearance) Virus titer at 3 d p.i., TCID50/mL

V-009 33.87 30.87 No >6 d u.d.
Wk-177 u.d. 35.08 No >6 d u.d.
I-004 34.52 31.66 Yes 3 d 2.2 × 107

V-029 32.85 28.80 Yes 3 d 4.6 × 106

Wk-012 33.53 29.60 Yes 3 d 2.2 × 107

Wk-501 27.35 21.76 Yes 2 d 6.8 × 106

Wk-521 29.68 24.41 Yes 2 d 6.8 × 107

u.d.: undetermined.
*The real-time RT-PCR primers and probe sets (N and N2 sets) are described in Shirato et al. (10).
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